#167. Kvasikristaller? –årets Nobelpris i kemi?? Kameran avslöjar!! --eller de som kasta Nobelpriset i papperskorgen!!
Kvasikristallen, som gav årets Nobel pris i kemi, upptäcktes med hjälp av bilder från ett elektronmikroskop av Daniel Schechtman 1982. Före det hade många forskare kastat bilder av liknande innehåll i papperskorgen för att de trodde på gamla teorier.
Vanliga kristaller, som de som du går på varje dag, i berggrunden, som till exempel kvarts, byggs upp av atomer som sitter väl ordnade i tre dimensioner. Man säger att de har fjärrordning på atomerna. Det betyder att om du säter dig på en atom, vilken som, så är alltid omgivningen exakt lika. Motsatsen är amorfa material, som glas, vilket har bara närordning.
Men så finns det, vilket Schechtman på pekade, kvasikristaller som inte är två-, tre-, fyr- eller sextaliga, som vanliga kristaller, utan fem- eller tiotaliga. Han studerade metallegeringar med hjälp av elektronmikroskop och fick då fram en bild som ser ut så här!
Kvasikristall, 1986. Elektronmikroskopibild av så kallat diffraktionsmönster.
Ja, jag har tagit den här bilden eftersom vi också studerade kvasikristaller vid Lunds universitet 1986. Om du sätter dig på en vit prick i mitten på den här bilden så får du 10 vita prickar runt dig. Dessutom är avståndet mellan två prickar i en rad det gyllene snittet, ungefär 1,618. Bilden ovan kommer från det bakre fokalplanet i elektronmikroskopet och det visar det så kallade diffraktionsmönstret, vilket visar bild av det ”inversa rummet”. Här är alla avstånd A inverterade dvs =1/A. Kort avstånd blir långa och långa avstånd blir korta. Det är tur att man i elektronmikroskopet kan koppla om till det vanliga bildplanet och samtidigt se den tvådimensionella bilden av atomstrukturen. Även i denna kan man se den 10-taliga symmetrin. Bilder med 5- och 10-talig symmetri i planet har man känt till länge. Om du reser till Alhambra, i Spanien, så finns där islamiska apriodiska mosaiker med denna symmetri och de är från 1300-talet. Det är svårare att fylla rymden, 3 dimensioner, med atomer med denna symmetri, men det kan naturen göra i kvasikristallen. Det finns till och med ett mineral, ikosaedrit, som består av en legering av aluminium, koppar och järn.
Islamisk aperiodisk mosaik med lokal tiotalig symmetri, Alhambra 1991.
Många forskare hade tidigare studerat metallegeringar, långt före Schechtman. Redan på 30-talet, och även senare, när man studerade kristaller med röntgenstrålning fann man ofta diffraktionsmönster som det vi ser ovan. Man trodde på den här tiden att naturen inte kunde fylla kristallen med atomer som satt utspridda med 5- eller 10-talig symmetri. Följaktligen kastade man negativen i papperskorgen.
Så tro aldrig på vad andra säger!! –för då missar du Nobelpriset!!
Femtalig symmetri är ganska vanlig i naturen och nästa gång du går ut i skogen så se om du kan finna det.
Vilken symmetri ser du här?
Även senaste NyTeknik skrev om det. Dock utan egna bilder. :-)