photodo skrev:
Det pixelgenererade slumpmässiga bruset sätter en undre gräns för en digitalkameras dynamiska exponeringsomfång. Detta brus ställer till med problem först när ett mycket litet antal fotoner träffar kamerans sensor. Problemen uppstår när högsta ISO är inställt på kameran samt när mörka motivdetaljer underexponeras. Fotonerna reflekteras från de mörka detaljerna, träffar kislet i pixlarna på kamerans sensor och exciterar elektroner. När antalet exciterade elektroner är för litet, kan de inte med säkerhet urskiljas från de elektroner som slumpmässigt genereras i pixlarna. Vi får ingen information om de mörkaste (underexponerade) motivdetaljerna vid kamerans högsta ISO.
Problemet med brus är att vi inte vet hur många elektroner som genereras i en pixel. Det kan vara 16, 12, 8, 10, 6 eller 11 elektroner. Antalet skiljer i samma pixel mellan olika avläsningar (efter olika exponeringar). Antalet skiljer också mellan olika intilliggande pixlar vid samma avläsning.
Genom att sampla (samla in) brusinformation från flera pixlar; antingen från en grupp av flera pixlar på sensorn (binning), eller från flera utläsningar av samma pixel (medelvärdesbildning); kan man statistiskt räkna bort en del av bruset. Ju fler pixlar/utläsningar, desto säkrare statistiska beräkningar och mindre brus. När bruset sjunker ökar DR och möjligheten att ställa in ett högre ISO på kameran.
Under ideala omständigheter kan vi utöka DR med en bit (= ett exponeringssteg = ett ISO-steg) genom att binna fyra pixlar. Det vi offrar är 75% av upplösningen; en kamera med 12 MP reduceras till en 3 MP-kamera.
För bästa möjliga resultat krävs så exakt information om bruset som möjligt. 14 bits ADC ökar precisionen av den binära beskrivningen av bruset och är betydligt bättre än 12 bits. Se till så att så lite skugginformation som möjligt går förlorad vid råkonverteringen. Använd hellre 16 bits tiff än 8 bits. Undvik jpeg.