Fovea eller centralgropen (Fovea centralis) (latin fovea 'grop, grav') är en fördjupning i gula fläcken på näthinnan och platsen för ögats detaljcentrerade seende. I fovean sitter tapparna mycket tätt och fördjupningen gör också näthinnan tunnare här än i resten av ögat. Hos människan är fovean rund, men en del djur har i stället en horisontellt formad fovea vilket gör att deras detaljseende fungerar bra längs med horisonten. Många fåglar har två foveor som även innehåller många fler tappar och som därmed ger en skarpare syn.
Tappar och stavar [redigera]Näthinnan innehåller två typer av ljuskänsliga celler - tappar och stavar. Trots att de har samma uppbyggnad och metabolism, har de väldigt olika funktioner.
Stavarna är mycket ljuskänsliga, vilket gör att de fungerar även i mörker. Det är de här cellerna som gör att människor och djur kan se i exempelvis månljus. Dock kan de inte skilja mellan olika färger, och de har dålig synskärpa (det vill säga de har svårt att skilja på detaljer). Det är därför som saker verkar få mindre färg, ju mörkare omgivningen blir.
Tapparna å andra sidan ger hög synskärpa under goda ljusförhållanden. Ju tätare tapparna sitter, desto högre blir synskärpan. Olika sorters tappceller reagerar också på olika färger (våglängder av ljus), vilket gör dessa ansvariga för en organisms färgseende. Tapparna har även en möjlighet att blir trötta efter ett intensivt synintryck. Om man t.ex. tittar intensivt på ett rött streck på marken så ser man ett grönt streck om man tittar på en vit yta. Det beror på att tapparna blir trötta och de sänder inte lika mycket röda signaler längre, då verkar den delen av synfältet mer grön (alltså motsatsfärgen) än resten av synfältet och därför ser man då ett grönt streck.
Hos däggdjur och fåglar med god syn finns det ofta ett eller flera områden i ögats näthinna med extra mycket tappar. Hos människan (och en del andra djur) finns denna i en rund, lite tunnare fördjupning av näthinnan. Denna grop kallas för gula fläcken eller fovea (fullständigt latinskt namn: fovea centralis, centrala gropen) och sitter rakt bakom linsen. En del djur har en horisontellt formad fovea vilket gör att deras detaljseende fungerar bra längs med hela horisonten. Många fåglar har två foveor som även innehåller mycket fler tappar än hos exempelvis människan och som därmed ger dem ytterligare skarpare syn.
Eftersom tapparna behöver mycket ljus för att fungera optimalt blir det problem för exempelvis astronomer, då de inte kan se på ljussvaga stjärnor med ögats vanliga fokus, där ljuset inte är tillräckligt för att stimulera tapparna. Därför betraktar ofta astronomer stjärnorna genom "ögonvrån" (genom att titta lite bredvid), där andelen ljuskänsligare stavar är högre.
Både tappar och stavar är alltså känsliga för ljus, men för ljus av olika frekvenser. De innehåller båda ett pigmenterat ljusreceptor-protein, som i stavarna heter rhodopsin, i tapparna iodopsin. Både tappar och stavars ljusreceptorprotein består av en proteindel (stavar: opsin, tappar: fotodopsin), som är associerad med retinal, som inte är ett protein utan syntetiseras från vitamin A i näthinnans pigmentepitel. Processen som ljusreceptorproteinerna genomgår är likartade - när proteinet utsätts för elektromagnetisk strålning av en särskild våglängd och intensitet (det vill säga ljus inom det synliga spektret) bryts retinalet ned från sin normala konfiguration (11-cis-retinal) till en isoform (transretinal). Retinalen släpper också från opsinet/fotodopsinet. Denna process startar en signalväg som stänger jonkanaler i cellmembranet vilket förorsakar en impuls som så småningom når hjärnans syncentrum.
I närmare detalj fungerar rhodopsinet/iodopsinet i princip som en så kallad G-protein-kopplad receptor, vars aktivering leder till att ett enzym, cGMP-fosfodiesteras, börjar omvandla signalmolekylen cGMP till 5'-GMP. Då cGMP behövs för öppning natriumkanalerna leder spjälkning till stängning vilket ger en hyperpolarisering av cellen. Denna hyperpolarisering leder till att utsöndringen av neurotransmittorer till synapsen avbryts. Detta kan verka bakvänt, men i näthinnans fotoreceptorer har neurotransmittorerna en inhiberande effekt på synapsen, och utsöndras normalt konstant. Att de slutar utsöndras leder på så sätt till aktivering av synapsen.
Flera sensoriska celler är kopplade till samma bipolära nervcell, som sedan är kopplad till en enda ganglie (nervknut) som skickar informationen vidare till syncentrat. Men tapparna i fovea är ofta kopplade individuellt till de bipolära cellerna och behöver sällan dela ganglie. Ju flera sensoriska celler som delar ganglie desto mindre skarp blir bilden från den delen av näthinnan.
Enligt den trikromatiska färgteorin uttyds färger genom att iodopsinet i tapparna finns i olika varianter. En typ bryts ner av den specifika ljusvåglängd som kommer från rött ljus, en från grönt ljus och en från blått ljus, medan den fjärde typen av tappar är känslig för ultraviolett ljus. Människan och andra högre utvecklade apor har tre typer av tappar som främst reagerar på blått, grönt och rött. De flesta andra däggdjur har två typer av tappar som främst regarera på blått och grönt medan fåglar har fyra typer av tappar så att de förutom blått, grönt och rött också kan se ultraviolett ljus. Sköldpaddor har sex olika typer av tappar. Om alla tre typer stimuleras lika mycket, ser man vitt, och om ingen stimuleras ser man svart. Oftast stimuleras de olika typerna olika mycket, vilket leder till att man ser olika färger. De tre färgerna kallas primärfärger. Om man blandar två av dem får man sekundärfärger, och blandar man två sekundärfärger får man tertiärfärger, och så vidare. Felfunktion hos någon av tapptyperna ledar till olika grad av färgblindhet. För rovfåglarna blir det mer komplicerat.
Saxat från Wikipedia !